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Abstract

We present PAIRSPANBERT, a SPANBERT-
based pre-trained model specialized for bridg-
ing resolution. To this end, we design a novel
pre-training objective that aims to learn the
contexts in which two mentions are implic-
itly linked to each other from a large amount
of data automatically generated either heuristi-
cally or via distance supervision with a knowl-
edge graph. Despite the noise inherent in the
automatically generated data, we achieve the
best results reported to date on three evaluation
datasets for bridging resolution when replacing
SPANBERT with PAIRSPANBERT in a state-
of-the-art resolver that jointly performs entity
coreference resolution and bridging resolution.

1 Introduction

Bridging is essential for establishing coherence
among entities within a text through non-identical
semantic or encyclopedic relations (Clark, 1975;
Prince, 1981). As demonstrated in Example 1,
the implicit link established through the bridging
anaphor (prices) and its antecedent (meat, milk
and grain) exemplifies the local entity coherence.

(1) In June, farmers held onto meat, milk and
grain, waiting for July’s usual state directed price
rises. The Communists froze prices instead.

The task of bridging resolution, which involves
identifying all bridging anaphors in a text and link
them to their antecedents, is crucial to comprehend
the relations between discourse entities for various
downstream applications, such as question answer-
ing (Anantha et al., 2021) and dialogue systems
(Tseng et al., 2021).

The most successful natural language learning
paradigm to date is arguably the “pre-train and fine-
tune" paradigm, where a model is first pre-trained
on very large amounts of data in a task-agnostic,
self-supervised manner and then fine-tuned using a
potentially small amount of task-specific training

data in the usual supervised manner. This paradigm
is ideally applicable to bridging resolution, where
the amount of annotated training data is relatively
small, especially in comparison to the related task
of entity coreference resolution.1 In fact, by using
SPANBERT (Joshi et al., 2020) to encode the input
and fine-tuning it using bridging-annotated data,
Kobayashi et al. (2022b) have managed to achieve
the best results reported to date on two commonly-
used evaluation datasets for bridging resolution,
namely ISNotes (Markert et al., 2012) and BASHI
(Rösiger, 2018).

A natural question is: how can we build upon
the successes of this pre-train and fine-tune frame-
work for bridging resolution? Apart from achiev-
ing state-of-the-art results, Kobayashi et al. (2022b)
showed that bridging resolution performance dete-
riorates when SPANBERT is replaced with BERT
(Devlin et al., 2019) as the encoder. While it is
perhaps not surprising that SPANBERT achieves
better resolution results than BERT given its supe-
rior performance on a wide variety of NLP tasks,
it is important to step back and understand why.
Recall that SPANBERT is an extension of BERT
that is motivated by entity-based information ex-
traction (IE) tasks such as entity coreference and
relation extraction. These tasks typically involve
the extraction of entity mentions, which are text
spans. In order to learn span (as opposed to word)
representations, SPANBERT is pre-trained with
span-level masking and objective. The key point
here is that a pre-trained model tends to work better
for a downstream task (which in our case is bridg-
ing resolution) if it is pre-trained on an objective
that is in some sense “related" to the downstream
task.

Motivated by this observation, we design a novel
1While one of the largest annotated entity coreference

datasets, OntoNotes (Pradhan et al., 2012), is composed of
2802 English documents for model training, two of the most
widely used English corpora for bridging resolution research,
ISNotes and BASHI, only comprise 50 WSJ documents each.



pre-training objective for bridging resolution that
allows a model to learn the contexts in which two
mentions are implicitly linked to each other. We
subsequently use our objective to further pre-train
SPANBERT in combination with its original ob-
jectives, yielding PAIRSPANBERT, a pre-trained
model that is intended to specialize in bridging
resolution. Note that an important factor that
contributes to the success of pre-training is the
sheer amount of data the model is pre-trained on:
since pre-training tasks are designed to be self-
supervised learning tasks, a very large amount of
annotated training data can be automatically gen-
erated, thus allowing the model to potentially ac-
quire a large amount of linguistic and common-
sense knowledge. To enable our model to learn
contexts that are indicative of bridging, we employ
a large amount of data that can be automatically
generated either heuristically (Hou, 2018a) or via
distance supervision using a knowledge graph.

While the vast majority of existing bridging re-
solvers were evaluated in the rather unrealistic set-
ting where gold mentions were assumed as input,
we follow Kobayashi et al.’s (2022b) recommen-
dation and evaluate our bridging resolver in both
the (realistic) end-to-end setting, where we assume
raw text as input, and the gold mention setting,
where gold mentions are given. When replacing
SPANBERT with PAIRSPANBERT in Kobayashi
et al’s bridging resolver, we achieve the best results
reported to date on three datasets for bridging reso-
lution, ISNotes, BASHI, and ARRAU RST (Poesio
and Artstein, 2008), in both evaluation settings de-
spite the large amount of noise inherent in our au-
tomatically generated data. To our knowledge, this
is the first work that reports end-to-end bridging
resolution results on the ARRAU RST dataset.

2 Related Work

Bridging resolution. The two sub-tasks of bridg-
ing resolution, namely bridging anaphora recogni-
tion and bridging anaphora resolution, have been
tackled separately. One line of research (Rahman
and Ng, 2012; Hou et al., 2013a; Hou, 2020b) has
modeled bridging anaphora recognition as a part
of the information status (IS) classification prob-
lem, assigning each discourse entity to an IS cat-
egory, with bridging being one of the categories.
In contrast, bridging anaphora resolution focuses
on identifying the antecedents for gold bridging
anaphors (Poesio et al., 2004; Hou et al., 2013b;

Pandit et al., 2020). There have been several stud-
ies addressing full bridging resolution, which in-
volves recognizing bridging anaphors and deter-
mining their antecedents. These works include
rule-based approaches (Hou et al., 2014; Rösiger
et al., 2018), learning-based approaches (Hou et al.,
2018; Yu and Poesio, 2020), and hybrid approaches
(Kobayashi and Ng, 2021; Kobayashi et al., 2022a).

Recent studies have begun tackling bridging
resolution and its sub-tasks in the end-to-end set-
ting. For example, Hou (2021) uses a combination
of neural mention extraction and IS classification
models for bridging anaphora recognition. Fur-
thermore, Hou (2020a) proposes a QA approach
of rephrasing bridging anaphors as questions and
training question answering models to directly ex-
tract antecedents from the previous context. Finally,
there are a few works (Kim et al., 2021; Kobayashi
et al., 2021; Li et al., 2022) proposing models for
full bridging resolution in the end-to-end setting
in the 2021 and 2022 CODI-CRAC shared tasks
on Anaphora, bridging, and Discourse Deixis in
Dialogue (Khosla et al., 2021; Yu et al., 2022). Re-
cently, Kobayashi et al. (2022c) conduct a system-
atic evaluation of bridging resolvers using different
standard encoders, including BERT (Devlin et al.,
2019) and SpanBERT (Joshi et al., 2020), in the
end-to-end setting.

Enhanced pre-trained language models. BERT
(Devlin et al., 2019), which is based on the Trans-
former architecture (Vaswani et al., 2017), has re-
cently attracted significant attention. Researchers
have proposed methods to enhance it for a wide
range of downstream tasks. One line of research
focuses on improving the masking scheme and
training objectives for pre-training models for tasks
such as question answering and sentence selection
(Ram et al., 2021; Ye et al., 2020; Di Liello et al.,
2022). Another line of work focuses on incorporat-
ing external knowledge into the pre-trained models
to solve knowledge-driven problems such as rela-
tion extraction (Liu et al., 2020; Qin et al., 2021).

3 The Current State of the Art

State-of-the-art results on ISNotes and BASHI
were reported in Kobayashi et al. (2022b). As
mentioned before, they first use SPANBERT to en-
code the input sentences and then feed the resulting
span representations to a multi-task learning model
originally proposed by Yu and Poesio (2020) that
jointly learns entity coreference and bridging res-
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Figure 1: The MTL framework for bridging resolution.

olution. Since we aim to create PAIRSPANBERT,
which specializes SPANBERT for bridging reso-
lution, and eventually replace SPANBERT with
PAIRSPANBERT in the aforementioned multi-task
learning framework, in this section we will give
an overview of the modified Yu and Poesio multi-
learning framework described in Kobayashi et al.
as well as the inner workings of SPANBERT.

3.1 The Multi-Task Learning Framework
The model takes as input a document D and either
a set of gold mentions associated with D (in the
gold mention setting) or a set of mentions extracted
from D by a mention extractor (in the end-to-end
setting). It simultaneously learns the two tasks.

The bridging resolution task involves assigning
span i an antecedent yb ∈ {1, ..., i − 1, ϵ}, where
the value of yb is the id of the span i’s antecedent,
which can be a dummy antecedent ϵ (i.e., i is not
anaphoric) or one of the preceding spans. Yu and
Poesio define the scoring function as below.

sb(i, j) =

{
0 j = ϵ

sa(i, j) j ̸= ϵ
(1)

where sa(i, j) is a pairwise bridging score which
indicates how likely span i refers to a preceding
span j. The model predicts the antecedent of i
to be y∗b = argmaxj∈Yb(i)

sb(i, j), where Yb(i) is
candidate antecedents of i.

The entity coreference resolution task involves
identifying entity mentions that refer to the same
real-world entity. The task aims to find an an-
tecedent yc for each span i using the scoring func-
tion sc, which can be defined in a similar way to
how sb is in the bridging resolution task.

The model structure, which is shown in Figure
1, is described below.

Span Representation Layer Kobayashi et al.
adopt the independent version of the entity-
coreference resolver in Joshi et al. (2019) to the
bridging resolution. An input document is di-
vided into non-overlapping segments, each of
which has a fixed size. These word sequences
serve as input training sequences and are passed
to SPANBERT to encode tokens and their con-
texts. Finally, span i’s representation gi is set as
[hstart(i);hend(i);hhead(i);ϕi], where hstart(i) and
hend(i) are the hidden vectors of the start and end
tokens in the span, hhead(i) is an attention vector
computed over the tokens of the span, and ϕi is a
feature embedding that encodes a span width.

Bridging Prediction Layer Yu and Poesio com-
pute the following pairwise score to predict a bridg-
ing link between span i and span j:

sa(i, j) = FFNNb([gi; gj ; gi ◦ gj ;ψij ]) (2)

where FFNNb(·) is a feedforward neural network
used in the bridging prediction layer, and ψij en-
codes the segment distance between span i and
span j. ◦ denotes element-wise multiplication, and
gi ◦ gj encodes the similarity between two spans.

Coreference Prediction Layer The coreference
prediction layer is defined analogously as the bridg-
ing prediction layer with another FFNN, FFNNc.
The first few layers of FFNNb and FFNNc are
shared, as well as the span representations.

Kobayashi et al. propose a "hybrid" approach
that incorporates Rösiger et al.’s (2018) rules into
the MTL model by defining a rule score function
r(i, j), the value of which is the precision of each
rule that posits a bridging link between two spans
i, j. Then, the rule score is added into equation (1)
as below:

sb′(i, j) =

{
0 j = ϵ

sb(i, j) + αr(i, j) j ̸= ϵ
(3)

where α is a positive constant that determines the
impact of the rule information on s′b. The model
uses s′b(i, j) to rank the bridging candidate an-
tecedents of i.2.

2Note that (1) the value of r(i, j) is 0 if no rule predict a
bridging link for i, j; (2) precisions of rules are computed on
training set; and (3) α is tuned on the development set.
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Figure 2: An illustration of the masking scheme and
objectives in SPANBERT. Span masking masks all sub-
word tokens in the span, "sever food restriction". Given
a masked token "food", MLM makes predictions based
on the contextualized vector t5, whereas SBO makes
predictions based on the external boundaries tokens of
the span t3, t7 as well as the position embedding p2

that indicates that "food" is the second token from t3.

The loss for each task is defined as the nega-
tive marginal log-likelihood of all correct bridg-
ing antecedents (or coreference antecedents). The
bridging task loss and coreference task losses are
combined using the weighted sum. The weight for
each loss is tuned using grid search so that the aver-
age bridging resolution F-scores is maximized on
the development set.

3.2 SpanBERT

The SPANBERT pre-trained model is an exten-
sion of BERT aimed at better learning of the rep-
resentation of text spans.3 Like BERT, SPAN-
BERT takes as input a sequence of subword tokens
T = [t1, ..., tn] and produces a sequence of contex-
tualized vector representations T = [t1, ..., tn]. In
order to better learn span representations, SPAN-
BERT employs two pre-training objectives:

Masked Language Modeling (MLM). In the
original definition of the MLM task, given a se-
quence of tokens T = [t1, ..., tn], a randomly
chosen subset of tokens is replaced with a spe-
cial [MASK] token, and the goal is to predict for
each masked token in a sequence the original to-
ken using T. The MLM loss, LMLM , is the cross
entropy loss. To better learn span representations,
SPANBERT extends MLM so that it allows not
only token masking but also span masking, which

3Although SPANBERT is often viewed as an extension
of BERT, not everything in BERT appears in SPANBERT.
For example, while BERT is pre-trained on the so-called next
sentence prediction (NSP) task, SPANBERT is not.

masks spans of tokens, and the goal is to predict
each masked span using the surrounding context.

Span Boundary Objective (SBO) . Given a
masked span consisting of contiguous tokens
(ts, ..., te), SBO aims to predict the original token
for each token in the masked span using the contex-
tualized vectors of two tokens, namely the token
to the left of the span boundary and the one to the
right of its span boundary (i.e., ts−1 and te+1), as
well as the position embedding of the target token
pi. The SBO loss, LSBO, is the cross-entropy loss.

Figure 2 illustrates how MLM and SBO work
with an example.

4 PAIRSPANBERT

Next, we present PAIRSPANBERT, an extension
of SPANBERT specialized for bridging resolution.
To create PAIRSPANBERT, we use SPANBERT
as a starting point and add a pre-training step to it
that would enable the model to learn the contexts
in which two mentions are implicitly linked to each
other from data that is automatically generated ei-
ther heuristically or via distant supervision with the
help of a knowledge graph. To do so, we will de-
scribe how we obtain automatically generated data
(Section 4.1), the pre-training task (Section 4.2),
and the pre-training objective (Section 4.3).

4.1 Labeled Data Creation

We aim to collect automatically labeled data that
would enable the model to learn the contexts in
which two mentions are implicitly linked. As noted
in the introduction, a pre-training task tends to be
more effective for improving a target task (which in
our case is bridging resolution) if the pre-training
task is "closer" to the target task. Hence, we seek
to collect automatically labeled data in which the
two implicitly linked mentions are likely to have a
bridging relation. We begin by (1) collecting noun
pairs that are likely involved in a bridging relation
in a context-independent manner, and then (2) using
these pairs to automatically label sentences.

4.1.1 Collecting Noun Pairs
We obtain noun pairs that are likely to be involved
in a bridging relation heuristically (via the syntactic
structure of NPs) and via distance supervision (with
the help of ConceptNet), as described below.

Syntactic Structure of NPs Following Hou
(2018b), we extract noun pairs from the automati-
cally parsed Gigaword corpus (Napoles et al., 2012)



by using the syntactic structures of NPs. Specifi-
cally, we first extract two NPs, X and Y, that are
involved in the prepositional structure X preposi-
tion Y (e.g., "the door of the red house") or the
possessive structure Y ′s X (e.g., "Japan’s prime
minister"), since Hou (2018b) has shown that these
structures encode a variety of bridging relations
between anaphors and their antecedents. Then, we
create a noun pair from each extracted (X, Y) pair
using the head noun of X and the head noun of
Y. Note that the bridging relations captured in the
resulting noun pairs, if any, are asymmetric. Typi-
cally, X corresponds to an anaphor while Y corre-
sponds to its antecedent. For example, in "the door
of the red house", the extracted X and Y would be
"the door" and "the house", respectively.

ConceptNet Next, we show how to extract noun
pairs that are likely involved in a bridging rela-
tion from ConcepNet. The exploitation of knowl-
edge bases for bridging resolution so far has largely
focused on deriving features from WordNet (e.g.,
computing the lexical distance between two men-
tions) (Poesio et al., 2004) and using these fea-
tures to improve weak baselines (e.g., Pandit et al.
(2020) incorporated knowledge-based features into
an SVM model rather than a neural model). To our
knowledge, we are the first to investigate if Con-
ceptNet can be used to improve a state-of-the-art
bridging resolver.

ConceptNet is a knowledge graph that connects
phrases with labeled edges. It is built on various
sources such as Open Mind Common Sense (Singh
et al., 2002), Open Multilingual WordNet (Bond
and Foster, 2013), and "Games with a purpose"
(Von Ahn et al., 2006). There are 34 relations
(i.e., edge labels) in ConceptNet 5.5. For example,
gearshift-car has a PartOf relation label, meaning
gearshift is a part of car. We obtain NP pairs in
which two NPs are related through these Concept-
Net relations, and for each NP pair (X,Y), we create
a noun pair using the head noun of X and the head
noun of Y.

Since not all ConceptNet relations are useful for
bridging, we empirically identify the useful rela-
tions w.r.t. each evaluation dataset (e.g., ISNotes)
as follows. First, for each ConceptNet relation type
r, we apply the noun pairs extracted from r (see the
previous paragraph) to the training portion of the
dataset, positing a bridging link between two nouns
in a training document if (1) their heads are related
according to r and (2) they appear within two sen-

tences of each other. Then, we compute a bridging
resolution F-score w.r.t. r using the resulting bridg-
ing links. Finally, we sort the relation types in
decreasing order of F-score and retain the top k
relation types that collectively maximize the bridg-
ing resolution F-score on the training set. Only
the noun pairs that are related through the selected
relation types will be used to create automatically
labeled data.

As an example, the set of ConceptNet relations
that is determined to be useful for ARRAU RST is
shown in Table 2.

4.2 Automatically Generating Labeled Data
The success of pre-training stems in part from learn-
ing from very large amounts of labeled data. Auto-
matic generation of labeled data will enable us to
easily generate a large amount of labeled (though
noisy) data and allow the model to learn a variety
of contexts in which two mentions are likely to
have a bridging relation. In this subsection, we
describe how we create automatically labeled in-
stances, each of which is composed of one of the
noun pairs collected in the previous subsection
(through syntactic structures or ConcepNet) and
the surrounding context.

For each document in parsed Gigaword, we auto-
matically posit a bridging link between two nouns
if two conditions are satisfied. First, they appear
in one of the noun pairs collected in the previous
subsection. Second, they are no more than two
sentences apart from each other (because bridging
links typically appear in a two-sentence window).
There is a small caveat, however. Recall that the
two nouns in a noun pair (X, Y) extracted from
the syntactic structures play an asymmetric role,
where X is an anaphor and Y its antecedent. So,
when applying the first condition using the pairs
collected from syntactic structures, the condition is
satisfied only if X appears after Y in the associated
document. For the noun pairs collected from Con-
ceptNet, we do not have such a restriction since
we did not mark which noun is the anaphor and
which noun is the antecedent for each ConceptNet
relation type.

4.3 Masking
Using the method described in the previous sub-
section, we will be to automatically annotate each
Gigaword document with bridging links. Next, we
will describe the two masking schemes we employ
in PAIRSPANBERT, based on which we will define
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Figure 3: An illustration of anchor masking and ANO.
f(·) corresponds to equation (5). Given a masked an-
chor "company", LANO calculates the probability that
"office" is associated with "company", using the con-
textualized vectors of the start and end subword tokens
of (masked) "company" and "office", t2, t7. In this ex-
ample, neither words are divided into subwords, so the
start and end tokens are the same.

pre-training tasks to predict the masked tokens in
the next subsection.

PAIRSPANBERT assumes as input a 384-token
segment (which in our case is taken from an au-
tomatically annotated Gigaword document). We
define two masking schemes to mask the tokens
in a given segment. First, we employ span mask-
ing, as described in the MLM task in Section 3.2
where randomly selected spans of tokens are re-
placed with the [MASK] tokens. This masking
strategy does not rely on the automatically identi-
fied bridging relations. Second, we define an an-
chor masking strategy, where we randomly choose
the antecedents (i.e., anchors) in our automatically
identified bridging relations and replace each (sub-
word) token in each selected antecedent with the
[MASK] token.

We consider both masking schemes important
for PAIRSPANBERT. As bridging resolution in-
volves identifying relations between spans, span
masking will ensure that the model learns good
span representations. In contrast, anchor masking
is designed to eventually enable the model to learn
the contexts in which two nouns are likely involved
in a bridging relation.

Following previous work Joshi et al. (2020), we
mask at most 15% of the tokens in each input seg-
ment. In addition, we ensure that (1) among the
masked tokens, p% will be masked using anchor
masking, and the remaining ones will be masked
using span ranking; and (2) the tokens masked by
the two masked schemes do not overlap. Based on

preliminary experiments on development data, we
set p to 20.

4.4 Pre-Training Tasks

PAIRSPANBERT employs three pre-training tasks,
MLM, SBO, and Associative Noun Objective
(ANO). The MLM and SBO tasks are the same
as those used in SPANBERT (see Section 3.2): we
apply them to predict the tokens masked by both
span ranking and anchor ranking.

ANO is a novel pre-training task we define
specifically to enable the model to learn knowl-
edge of bridging. Unlike MLM and SBO, which
we apply to masked tokens produced by both mask-
ing schemes, ANO is applicable only to the masked
tokens produced by anchor ranking. Specifically,
given a sequence of input tokens T = [t1, ..., tn]
and a masked anchor anc consisting of subword
tokens (ts1, ..., te1), the goal of ANO is to pre-
dict an anaphor ana consisting of subword tokens
(ts2, ..., te2).4 The probability that ana is associ-
ated with anc is defined using their boundary to-
kens (i.e., start and end tokens) as follows.

P (ana|anc) = P (ts2|ts1) · P (te2|te1) (4)

We calculate the probability of token ti given to-
ken tj in the sequence T using the contextualized
vectors T = [t1, ..., tn] produced by SPANBERT.

P (ti|tj) =
exp(s(ti, tj))∑

tk∈T exp(s(tk, tj))
(5)

where s(ti, tj), the similarity between ti and tj , is
computed as (w ◦ ti) · tj , w is a trainable vector of
parameters, · is the dot product, and ◦ is element-
wise multiplication. Figure 3 illustrates ANO and
anchor masking with an example.

Given a set of masked anchors anc ∈ A and
anaphors associated with each anchor ana ∈ C,
we define the loss LANO as follows.

LANO = − log
∏

anc∈A

∑
ana∈C

P (ana|anc) (6)

Finally, we compute the loss for PAIRSPAN-
BERT L as the sum of the losses of its three pre-
training objectives.

L = LMLM + LSBO + LANO (7)

4Note that a given anchor may be associated with more
than one anaphor.



Corpora Docs Tokens Mentions Anaphors
ISNotes 50 40,292 11,272 663
BASHI 50 57,709 18,561 459

ARRAU RST 413 228,901 72,013 3,777

Table 1: Statistics on different corpora.

Relation Type
RelatedTo, Synonym, UsedFor, HasA, IsA,

AtLocation, capital, CapableOf, PartOf, InstanceOf

Table 2: ConceptNet relations used for ARRAU RST.

5 Evaluation

5.1 Experimental Setup
Corpora. For evaluation, we employ three com-
monly used corpora for bridging resolution, namely
ISNotes, BASHI, and ARRAU RST. Table 1 shows
statistics for these corpora. Because ISNotes and
BASHI lack a standard train-test split, we perform
five-fold cross validation on these corpora, using
70% of the documents for model training, 10% for
development, and 20% for model evaluation. For
ARRAU RST, we use the official train-test split.
Evaluation setting. We report results for bridg-
ing resolution in two settings, the end-to-end set-
ting, where only raw, unannotated documents are
given, and the gold mention setting, where gold
mentions are given. In the end-to-end setting, we
apply a mention detector to extract mentions.5

Evaluation metrics. Bridging anaphor recogni-
tion and resolution are reported in terms of preci-
sion, recall, and F-score. Recognition (Resolution)
precision is the proportion of predicted anaphors
that are correctly recognized (resolved). Recogni-
tion (Resolution) recall is the proportion of gold
anaphors that are correctly recognized (resolved).
Baseline systems. We employ five baselines.

The first baseline is a state-of-the-art rule-based
approach by Roesiger et al. (2018), denoted as
Rules(R) in Table 3. For ISNotes and BASHI, We
use Kobayashi et al.’s (2022b) publicly-available
re-implementation of Rules(R). For ARRAU RST,
no publicly-available implementation of Rules(R)
that can be applied to automatically extracted men-
tions is available, so we re-implement Rules(R)
for ARRAU RST for both the end-to-end and gold
mention settings.

As a second baseline, we design a rule-based
system based on the noun pairs extracted from the

5Following Kobayashi et al. (2022b), for ISNotes and AR-
RAU RST, we extract mentions using Hou’s (2021) neural
mention extractor; for BASHI, we extract mentions from syn-
tactic parse trees produced by Stanford CoreNLP.

syntactic structures and ConceptNet. Specifically,
we apply these noun pairs to the test set of each
evaluation corpus as follows. If the two nouns in a
pair appear within two sentences of each other in a
test document, check whether the cosine similarity
of their representations (obtained using Hou’s

The remaining baselines are all SPANBERT-
based. The third and fourth baselines are the state-
of-the-art SPANBERT-based resolver and its hy-
brid version introduced in Section 3 (denoted as
SBERT and SBERT(R) respectively in the table).
The final baseline incorporates the similarity value
computed by Rules(H) for each mention pair into
SBERT(R), denoted as SBERT(R,H), as a set of 9
binary features. Specifically, each binary feature
is associated with a threshold, and a binary feature
fires if the similarity value is greater than the thresh-
old associated with it. The 9 thresholds we use are:
[-0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8].

Implementation details. To pre-train
PAIRSPANBERT, we initialize it with the
SpanBERT-large checkpoint and continue pre-
training on the Gigaword documents automatically
labeled with bridging links (see Section 4.1).
Recall that these bridging links were created using
noun pairs extracted from two sources: syntactic
structures and ConceptNet. Rather than always
use both sources to create bridging links, we use
development data to determine whether we should
use one of them (and if so, which one) or both
of them. We optimize PAIRSPANBERT using
Adam (Kingma and Ba, 2014) for 4k steps with a
batch size of 2048 through gradient accumulation,
a maximum learning rate of 1e-4, and a linear
warmup of 400 steps followed by a linear decay of
the learning rate. The remaining hyperparameters
are the same as those in SPANBERT.

We fine-tune both SPANBERT and PAIRSPAN-
BERT for up to 300 epochs with Adam (Kingma
and Ba, 2014) in each dataset, with early stop-
ping based on the development set. The version of
SPANBERT we use is SPANBERT-large, so the
PAIRSPANBERT we end up with is PAIRSPAN-
BERT-large. The learning rates for SpanBERT
and PAIRSPANBERT are searched in the range of
{1e-5, 2e-5, 3e-5} while the task learning rates are
searched in the range of {1e-4, 2e-4, 3e-4}. We
split each document into segments of length 384.
Each model considers up to the K closest preced-
ing antecedent candidates. We search K out of
{50, 80, 100, 120, 150}. We search the weight



Model
ISNotes BASHI ARRAU RST

Recognition Resolution Recognition Resolution Recognition Resolution
P R F P R F P R F P R F P R F P R F

End-to-End Setting
1 Rules(R) 49.4 17.4 25.7 31.8 11.2 16.5 33.1 22.5 26.8 15.2 10.3 12.3 12.4 15.5 13.7 6.8 8.5 7.6
2 Rules(H) 9.2 21.1 12.8 3.4 7.8 4.7 3.5 15.1 5.7 1.0 4.3 1.6 6.6 14.5 9.0 1.6 3.6 2.2
3 SBERT 34.4 30.9 32.6 22.3 20.1 21.1 34.7 29.4 31.8 15.3 12.9 14.0 30.4 25.5 27.7 19.6 16.5 17.9
4 SBERT(R) 39.7 31.6 35.1 27.0 21.5 23.9 36.0 27.5 31.2 19.7 15.0 17.0 26.5 23.3 24.8 15.9 14.0 14.8
5 SBERT(R,H) 34.6 37.1 35.8 22.8 24.4 23.6 34.3 29.6 31.8 17.8 15.4 16.5 22.1 25.0 23.5 12.0 13.6 12.8
6 PSBERT 36.3 36.8 36.6 22.3 22.6 22.5 42.7 30.7 35.7 17.7 12.7 14.8 35.9 31.0 33.2 20.9 18.0 19.4
7 PSBERT(R) 40.2 39.5 39.9 26.4 25.9 26.2 43.8 27.0 33.4 24.6 15.1 18.7 28.5 23.8 26.0 17.5 14.6 15.9

Gold Mention Setting
8 Rules(R) 52.7 19.2 28.1 34.0 12.4 18.1 35.8 23.6 28.5 17.8 11.7 14.1 18.0 31.5 22.9 12.1 21.1 15.3
9 Rules(H) 9.5 22.9 13.4 3.6 8.6 5.0 3.6 15.5 5.8 1.1 4.9 1.9 7.3 15.6 10.0 1.8 3.9 2.5

10 SBERT 37.1 33.1 35.0 24.5 21.9 23.1 35.0 29.7 32.1 16.1 13.7 14.8 31.9 26.9 29.2 21.2 17.9 19.4
11 SBERT(R) 43.8 34.6 38.6 30.4 24.1 26.8 37.6 28.8 32.6 21.6 16.6 18.7 30.4 28.4 29.4 20.8 19.4 20.1
12 SBERT(R,H) 37.6 39.8 38.7 25.6 27.2 26.4 34.9 30.3 32.4 19.2 16.7 17.9 25.8 30.1 27.8 16.6 19.4 17.9
13 PSBERT 38.7 38.8 38.7 24.9 24.9 24.9 43.7 30.3 35.8 19.3 13.4 15.8 35.3 32.5 33.8 21.6 19.9 20.7
14 PSBERT(R) 41.8 41.5 41.6 28.0 27.8 27.9 44.8 27.4 34.0 26.2 16.0 19.9 33.9 28.9 31.2 23.8 20.2 21.9

Table 3: Results of different resolvers in the end-to-end and gold settings. Each result is the average of five runs.
The highest recognition and resolution F-scores for each dataset and each setting are boldfaced.

parameter for the rule score out of {50, 100, 150,
200}. Following previous work (Yu and Poesio,
2020), we downsample negative examples. The
downsampling rate is searched out of {0.2, 0.4, 0.6,
0.8}. The rest of the parameters are set to be those
reported in Kobayashi et al. (2022b).

5.2 Results and Discussion

End-to-end setting. The top half of Table 3
shows the end-to-end results. Consider first the
baseline results. Two points deserve mention. First,
in terms of F-score, SBERT(R,H) is significantly
worse than SBERT(R) on all three datasets.6 These
results seem to suggest that the use of the automat-
ically extracted noun pairs as additional features
into SBERT(R) fails to improve its performance,
probably because the noun pairs are too noisy to of-
fer benefits when incorporated as features. Second,
SBERT outperforms SBERT(R) on ARRAU RST.
An inspection of the results reveals the reason: the
rules designed by Rösiger et al. (2018) for ARRAU
RST have low precision, thus adversely affecting
the performance of SBERT(R) on ARRAU RST.

Second, the best resolution F-score is achieved
by PSBERT(R) on ISNotes and BASHI and by
PSBERT on ARRAU RST (again due to the
low precision rules). PAIRSPANBERT signifi-
cantly improves the best baseline in terms of res-
olution F-score by 2.3 points on ISNotes, 1.7
points on BASHI, and 1.5 points on ARRAU RST.
PAIRSPANBERT’s recognition F-scores are also
generally higher than those of the SPANBERT-

6All significance test results are two-tailed paired t-tests,
with p < 0.05 unless otherwise stated.

based resolvers. Although the noun pairs failed to
improve SBERT when used as features, our results
show that using these noun pairs to create automati-
cally labeled data for pre-training is a better method
to exploit such noisy information. Overall, we man-
age to achieve the best results to date on the three
datasets using either PSBERT or PSBERT(R).
Gold mention setting. Results using the gold
mention setting are shown in the bottom half of
Table 3. The observations we made on the end-to-
end results are more or less applicable to the gold
mention results, except that PSBERT(R) manages
to achieve the best resolution F-score on all three
datasets. These are also the best resolution results
obtained to date on these datasets for this setting.

5.3 Error Analysis
For a detailed analysis of the errors made by
PAIRSPANBERT on the three datasets, we refer
the reader to Appendix E.

6 Conclusion

We designed a novel pre-training task for bridg-
ing resolution using automatically annotated doc-
uments that contain NP pairs that are likely to be
linked via implicit relations, and demonstrated that
our newly pre-trained model, PAIRSPANBERT,
effectively captures bridging relations. On three
commonly-used datasets for bridging resolution,
our new resolver, based on PAIRSPANBERT, out-
performs the previous state-of-the-art model and
other strong baselines on full bridging resolution
in the end-to-end setting. All code and data will be
made available upon publication of this paper.



Limitations

Our pre-trained models targets a bridging resolu-
tion task, which could limit its application in other
NLP tasks. There might be other pre-training ob-
jectives and knowledge sources such as wikidata
that might be useful for bridging resolution, but we
designed only one additional pre-training objective
and used two knowledge sources. The pre-training
was conducted using four A100 GPUs for one day,
and the fine-tuning was done using a QUADRO
RTX 6000 GPU for six hours.

Ethics Statement

About the pre-training dataset we created within
this work, we do not expect to see any risk being
posed by the user of this dataset nor any financial
harm associated with its use. We will open-source
the pre-trained model (PAIRSPANBERT) produced
from this work immediately after publication. We
plan to make it available on Hugging Face Model
Hub.
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Model Bridging
Recognition Resolution

ISNotes
Rösiger et al. (2018) 25.6 17.5

Kobayashi et al. (2022b) 28.1 18.1
BASHI

Rösiger et al. (2018) 27.2 14
Kobayashi et al. (2022b) 28.5 14.1

ARRAU RST
Rösiger et al. (2018) 23.7 15.2

Our re-implementation 22.9 15.3

Table 4: Comparison of Rösiger et al’s (2018) resolver
and re-implementation. The table shows results of re-
implementation provided in Kobayashi et al. (2022b)
on ISNotes and BASHI, and our re-implementation on
ARRAU RST.

A Re-implementation of Rules

Recall that we re-implement the rules designed by
Rösiger et al. (2018) for ARRAU RST. These rules
were designed to operate on gold mentions.

Table 4 shows the performances of our re-
implementation of a rule-based system in the gold
mention setting on ARRAU RST as well as the
performances of re-implementation of rule-based
system in Kobayashi et al. (2022b) on ISNotes and
BASHI.
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B Performance of End-to-end Rules in
ARRAU RST

The end-to-end rules underperforms its gold ver-
sion by 7.7% in resolution F-score in ARRAU RST.
This performance mainly drop steps from mention
extraction results and the quality of automatically
calculated features used for rules in the end-to-
end setting. While there are eleven rules for AR-
RAu RST, eight of them are designed specifically
for ARRAu RST and not part of the rules for IS-
Notes and BASHI. The performances of these rules
largely depend on gold annotation, particularly se-
mantic category information.

We give examples for one of those eight rules,
called the "Subset/Element-of" rule. In this rule, an
anaphor must be modified by either an adjective, a
noun, or a relative clause. Then, this rule searches
for the closest candidate antecedent that has the
same category and the same head as the anaphor in
the last three sentences. In the following, we give
an example of recall errors and precision errors
made by the end-to-end rules but not by the gold
mention setting version.

In the end-to-end setting, we automatically ob-
tained the semantic category information using
spaCy. However, gold categories in ARRAU RST
have a different set of category labels. For example,
ARRAu RST annotates "abstract" and "concrete"
as part of categories to indicate if an entity refers
to an abstract or a concrete object. These labels
do not exist in spaCy. For example, in the gold
mention setting, the "Subset/Element-of" rule cor-
rectly predicts "rents"-"Manhattan retail rents", and
both mentions are annotated as "abstract" in gold
annotations. On the other hand, there is no category
label for these two mentions from the automatically
obtained category information, so the rule does not
predict this bridging pair. Compared to the gold
mention setting, the end-to-end rule underperforms
by 9.6% in recognition recall and by 7.1% in reso-
lution recall.

One reason of the performance drop in precision
is the wrong predicted mentions. For example,
the end-to-end rule predicts "federal district court
in Dallas"-"the Fifth U.S. Circuit Court" but "the
Fifth U.S. Circuit Court" is not a gold mention.
Compared to the gold mention setting, the end-to-
end rule underperforms by 5.3% in recognition and
by 4.1% in resolution precision.

Gigaword ConceptNet
Noun Pairs 9,776,957 1,804,399-1,872,782

Mapped Pairs 1,712,180,318 65,091,952-65,766,480

Table 5: Statistics for noun pairs extracted from each
knowledge source. In ConceptNet, we have a different
set of relations in each dataset, so we show the range of
statistics from different datasets.

C Baseline Performances

Results of Rules(R) (Rösiger et al., 2018) for the
gold setting in Table 3 are lower than the results
shown in the original paper because 1) the original
paper post-processes the system output with gold
coreference information and 2) we evaluate the
systems using the "harsh" setting described below.
Note that Rösiger et al. (2018) do not have end-to-
end results.

In the gold mention setting, we use the "harsh"
evaluation setting used in some previous work (e.g.,
(Hou et al., 2018; Kobayashi et al., 2022b)). In
ISNotes and BASHI, some bridging antecedents
are events while events are not annotated as gold
mentions. Previous studies handled these event
antecedents differently. When reporting results
on resolving gold mentions, some work (e.g., Hou
et al. (2014), Hou et al. (2018)) chose not to include
these event antecedents in the set of candidate an-
tecedents while others (e.g., Rösiger et al. (2018),
Yu and Poesio (2020)) did. However, the setting
in which gold event antecedents are not included
in training/evaluation is harsher because it implies
that anaphors with event antecedents will always
be resolved incorrectly. We believe that including
gold event antecedents during evaluation does not
represent a realistic setting, and will only report
results using the "harsh" setting in this paper.

D Noun Pair Statistics

Table 5 shows statistics for 1) the number of noun
pairs extracted from each knowledge source, and
2) number of possible mapping of these noun pairs
to all documents in Gigaword when following the
mapping method described in Section 4.2.

E Error Analysis

In this section, we analyze the errors made by
PAIRSPANBERT.

Error analysis of the best end-to-end model.
We perform an error analysis on our top-performing
end-to-end model, PSBERT(R) for ISNotes and



BASHI and PSBERT for ARRAU RST, to gain a
deeper understanding of its performance. Overall
it seems that the system still struggles to recognize
the majority of the bridging anaphors, with the re-
call scores ranging between 23.8% to 39.5% on
the three testing datasets. Our analysis reveals that
only a small percentage of recall errors in bridging
anaphora recognition were due to mention predic-
tion errors: 3%, 1.3%, and 2% of the gold bridging
anaphors are misclassified as non-mentions in IS-
Notes, BASHI, and ARRAU RST, respectively. We
find that the system constantly makes more recall
errors at predicting definite bridging anaphors (i.e.,
NPs modified by the definite article “the”) com-
pared to other bridging anaphors across all datasets.
For instance, on ISNotes, the recall scores of identi-
fying definite bridging anaphors and other bridging
anaphors are 31% and 45%, respectively.

Next we analyze the precision errors on ISNotes
and ARRAU RST, as BASHI does not have men-
tion annotations. Overall, we found that mention
prediction errors (misclassifying non-mentions as
bridging anaphors) account for 8.7% and 10.9%
of the precision errors on ISNotes and ARRAU
RST, respectively. On ISnotes, the majority of the
precision errors were caused by classifying new
and old mentions as bridging anaphors, account-
ing for 43% and 25% of the precision errors, re-
spectively. On ARRAU RST, 71% of the preci-
sion errors were due to new mentions being clas-
sified as bridging anaphors. This observation on
both datasets is in line with the previous research
on bridging recognition (Hou et al., 2018), which
suggests that systems often struggle to distinguish
bridging anaphors from generic new mentions with
simple syntactic structures.

Comparison of PSBERT(R) and SBERT(R) on
ISNotes and BASHI. We further compare our
best end-to-end system, PSBERT(R), with the previ-
ous state-of-the-art model, SBERT(R). On ISNotes,
PSBERT(R) predicts 35% more bridging pairs than
SBERT(R), resulting in a higher recall for recogniz-
ing bridging anaphors (39.5% vs. 35.1%). Over-
all, PSBERT(R) outperformed SBERT(R) at predict-
ing bridging pairs in which bridging anaphors are
not modified by any determiners (bare NPs), such
as “guests” or “walls”. On BASHI, however, the
trend is the opposite. PSBERT(R) predicts 18% less
bridging pairs than SBERT(R) but achieves a higher
precision score for bridging anaphora recognition
(43.8% vs. 36.0%).

Comparison of PSBERT and SBERT on AR-
RAU RST. On ARRAU RST, we compare PS-
BERT with SBERT in the end-to-end setting. Both
models predict a similar number of bridging pairs
but PSBERT achives a higher precision score at
recognizing bridging anaphors (35.9% vs. 30.4%).
We observe that PSBERT outperforms SBERT at
recognizing bridging anaphors that are bare NPs,
especially proper names such as “Seoul” or “Mis-
souri”.


